plot.svpredict
and plot.svlpredict
generate some plots
visualizing the posterior predictive distribution of future volatilites and
future observations.
Called for its side effects. Returns argument x
invisibly.
Note that svpredict
or svlpredict
objects can also be
used within plot.svdraws
for a possibly more useful
visualization. See the examples in predict.svdraws
and
those below for use cases.
Other plotting:
paradensplot()
,
paratraceplot()
,
paratraceplot.svdraws()
,
plot.svdraws()
,
volplot()
Other plotting:
paradensplot()
,
paratraceplot()
,
paratraceplot.svdraws()
,
plot.svdraws()
,
volplot()
## Simulate a short and highly persistent SV process
sim <- svsim(100, mu = -10, phi = 0.99, sigma = 0.1)
## Obtain 5000 draws from the sampler (that's not a lot)
draws <- svsample(sim$y, draws = 5000, burnin = 1000)
#> Done!
#> Summarizing posterior draws...
## Predict 10 steps ahead
pred <- predict(draws, 10)
## Visualize the predicted distributions
plot(pred)
## Plot the latent volatilities and some forecasts
plot(draws, forecast = pred)