The functions below can be supplied to specify_priors
to overwrite the default set of prior distributions in svsample
.
The functions have mean
, range
, density
, and
print
methods.
sv_constant(value)
sv_normal(mean = 0, sd = 1)
sv_multinormal(mean = 0, precision = NULL, sd = 1, dim = NA)
sv_gamma(shape, rate)
sv_inverse_gamma(shape, scale)
sv_beta(shape1, shape2)
sv_exponential(rate)
sv_infinity()
The constant value for the degenerate constant distribution
Expected value for the univariate normal distribution or mean vector of the multivariate normal distribution
Standard deviation for the univariate normal distribution or constant scale of the multivariate normal distribution
Precision matrix for the multivariate normal distribution
(optional) Dimension of the multivariate distribution
Shape parameter for the distribution
Rate parameter for the distribution
Scale parameter for the distribution
First shape parameter for the distribution
Second shape parameter for the distribution
Multivariate normal objects can be specified several ways. The most general way is by calling
sv_multinormal(mean, precision)
, which allows for arbitrary mean and (valid) precision
arguments. Constant mean vectors and constant diagonal precision matrices of dimension D
can be created two ways: either sv_multinormal(mean, sd, dim = D)
or
rep(sv_normal(mean, sd), length.out = D)
.
Other priors:
specify_priors()